2D/3D image registration using regression learning

نویسندگان

  • Chen-Rui Chou
  • Brandon Frederick
  • Gig S. Mageras
  • Sha Chang
  • Stephen M. Pizer
چکیده

In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and Fast 2D/3D Image Registration using Regression Learning

In computer vision and image analysis, image registration between 2D projections and a 3D image while obtaining high accuracy and real-time computation is challenging. In this paper, we propose a novel method that can speedily detect the object’s 3D rigid motion or deformation from a small set of its 2D projection images. The method consists of two stages: registration and pre-registration lear...

متن کامل

Regression Learning for 2d/3d Image Registration

CHEN-RUI CHOU: REGRESSION LEARNING FOR 2D/3D IMAGE REGISTRATION. (Under the direction of Stephen M. Pizer.) Image registration is a common technique in medical image analysis. The goal of image registration is to discover the underlying geometric transformation of target objects or regions appearing in two images. This dissertation investigates image registration methods for lung Image-Guided R...

متن کامل

Real-Time 2D/3D Deformable Registration Using Metric Learning

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...

متن کامل

LNCS 7766 - Medical Computer Vision

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...

متن کامل

3D Reconstruction in Canonical Co-ordinate Space from Arbitrarily Oriented 2D Images

Limited capture range and the requirement to provide high quality initialisation for optimisation-based 2D/3D image registration methods can significantly degrade the performance of 3D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, which contain significant subject motion such as fetal in-utero imaging, complicate the 3D image and volume reconstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer vision and image understanding : CVIU

دوره 117 9  شماره 

صفحات  -

تاریخ انتشار 2013